This list shows keyword variations and their frequency in individual articles – the frequency can be used to assess the relevance of the article to the search topic. The symbol (P) for a keyword means the word "Problem", respectively the keyword also appears in the specification of a problem. So far only article No.
Note: Articles 2 and 6 have not yet been translated into English.
Coefficient1. . . . . . . .
● Friction coefficient ● Loss coefficient
2., 3. . . . . . . .
● Drag coefficient ● Lift coefficient ● Pressure coefficient
4. . . . . . . .
● Flow coefficient ● Outlet coefficient ● Velocity coefficient
6. . . . . . . .
● Flow coefficient of valve ● Flow meter coefficient
7. . . . . . . .
● Entrance length coefficient
Compression5. . . . . . . .
● Isoentropic compression
Compressor5. . . . . . . .
● Supersonic compressor
Condition● Non-design condition
Constant1. . . . . . . .
● Pipeline system constant(P)
Contraction4. . . . . . . .
● Flow contraction
Coordinates1. . . . . . . .
● Logarithmic coordinate system
Cost1. . . . . . . .
● Acquisition cost ● Operating costs
Curve6. . . . . . . .
● Inversion curve
Density1. . . . . . . .
● Density
Diagram1. . . . . . . .
● Moody diagram ● Nikuradse diagram
Diameter● Equivalent diameter (see Characteristic dimension)
Diffuser1. . . . . . . .
● Diffuser
3. . . . . . . .
● Supersonic diffuser
5. . . . . . . .
● Cone diffusers(P) ● Cornut diffusers(P) ● Diffuser ● Short diffusers ● Stepped diffusers ● Subsonic diffuser ● Supersonic diffuser
Dimension7. . . . . . . .
● Characteristic dimension
Drag2. . . . . . . .
● Drag ● Dynamic drag
3. . . . . . . .
● Point of drag
● Shape drag (see Dynamic drag)
|
Effect6. . . . . . . .
● Joule–Thomson effect
Efficiency4. . . . . . . .
● Efficiency
5. . . . . . . .
● Hydraulic efficiency ● Efficiency
Ejector5. . . . . . . .
● Ejector
Element7. . . . . . . .
● Laminar flow element
Ellipse4. . . . . . . .
● Bendemann ellipse
Energy5. . . . . . . .
● Internal thermal energy
6. . . . . . . .
● Kinetic energy(P)
7. . . . . . . .
● Kinetic energy
Engine4. . . . . . . .
● Rocket engine
Enthalpy6. . . . . . . .
● Enthalpy(P) ● Stagnation enthalpy(P)
Entropy6. . . . . . . .
● Entropy
Equation1. . . . . . . .
● Colebrook equation ● Darcy-Weisbach equation ● Fanno equation
3. . . . . . . .
● Rankine-Hugoniot equations
7. . . . . . . .
● Euler equation ● Navier–Stokes equation
Exchanger5. . . . . . . .
● Heat exchanger
Exponent4. . . . . . . .
● Polytropic exponent
Fitting1. . . . . . . .
● Fitting
Flight5. . . . . . . .
● Supersonic flight
Flow1. . . . . . . .
● Laminar flow ● Turbulent flow
2. . . . . . . .
● Flow separation
3. . . . . . . .
● Flow deflection ● Flow separation ● Laminar flow ● Sonic flow ● Subsonic flow ● Supersonic flow ● Transonic flow ● Turbulent flow
4. . . . . . . .
● Critical flow ● Mass flow(P)
|
5. . . . . . . .
● Flow separation ● Mass flow
7. . . . . . . .
● Flow between plates(P) ● Flow separation ● Laminar flow(P) ● Mass flow ● Potential flow ● Turbulent flow
Fluid2. . . . . . . .
● Incompressible fluid
3. . . . . . . .
● Compressible fluid
7. . . . . . . .
● Ideal fluid ● Newtonian fluid ● Non-Newtonian fluid
Force1. . . . . . . .
● Friction force
2. . . . . . . .
● Force on profile
Fouling1. . . . . . . .
● Biofouling ● Particles fouling
Friction● Internal friction
2. . . . . . . .
● Friction ● Internal friction
Function3. . . . . . . .
● Prandtl-Meyer function
Heat1. . . . . . . .
● Loss heat
7. . . . . . . .
● Loss heat ● Re-used heat
Helium7. . . . . . . .
● Liquid helium
Hydrogen4. . . . . . . .
● Hydrogen
Impulse4. . . . . . . .
● Specific impulse
Injector5. . . . . . . .
● Injector(P)
Insert6. . . . . . . .
● Throttling insert
Interferogram3. . . . . . . .
● Interferogram
Law4. . . . . . . .
● Stodola's law
7. . . . . . . .
● Newton's viscosity law ● Poiseuille law
Layer2. . . . . . . .
● Boundary layer
3. . . . . . . .
● Thickness of boundary layer
7. . . . . . . .
● Boundary layer ● Thickness of boundary layer
|
Lemniscate4. . . . . . . .
● Lemniscate
Length7. . . . . . . .
● Entrance length
Lift2. . . . . . . .
● Lift
3. . . . . . . .
● Point of lift
Line1. . . . . . . .
● Fanno lines
3. . . . . . . .
● Mach line
6. . . . . . . .
● Fanno lines
Liquid6. . . . . . . .
● Throttling liquids
Losses1. . . . . . . .
● Pressure loss(P) ● Pressure loss per unit
3. . . . . . . .
● Losses(P)
4. . . . . . . .
● Flow through nozzle with losses(P)
5. . . . . . . .
● Diffuser losses ● Pressure loss
6. . . . . . . .
● Pressure loss ● Valve pressure loss
7. . . . . . . .
● Pressure loss
Machine5. . . . . . . .
● Jet machine
Meter6. . . . . . . .
● Differential pressure flow meter ● Flow meter location ● Venturi flowmeter
Method● Method of characteristics
Mineral1. . . . . . . .
● Crystallization of minerals
Momentum7. . . . . . . .
● Fluid momentum
N2O43. . . . . . . . ● N2O4
Nozzle1. . . . . . . .
● Nozzle
3. . . . . . . .
● Beveled nozzle ● Laval nozzle(P) ● Supersonic nozzle
4. . . . . . . .
● Bell nozzle ● Beveled nozzle ● Cone nozzle(P) ● Convergent nozzle ● Laval nozzle(P) ● Nozzle(P) ● Nozzles in series ● Nozzle theory ● Overexpanded nozzle ● Underexpanded nozzle
6. . . . . . . .
● Nozzle
● Convergent-divergent nozzle (see Laval nozzle) ● Tapering nozzle (see Convergent nozzle)
|
Number1. . . . . . . .
● Marginal Reynolds number
2. . . . . . . .
● Mach number
3. . . . . . . .
● Critical Mach number ● Critical Reynolds number ● Mach number
7. . . . . . . .
● Critical Reynolds number ● Reynolds number
Oxygen4. . . . . . . .
● Oxygen
Passage4. . . . . . . .
● Blade passage
Perimeter7. . . . . . . .
● Wetted perimeter
Pipe1. . . . . . . .
● Equivalent pipe length ● Pipe ● Pipe corrosion ● Pipe diameter ● Pipe fittings ● Pipe fouling(P) ● Pipe network ● Rough pipe ● Smooth pipe
6. . . . . . . .
● Hydraulic pipe balancing
7. . . . . . . .
● Pipe
Pipeline1. . . . . . . .
● Gas pipeline ● Pipeline shutdown time
Plate6. . . . . . . .
● Orifice plate
Pressure2. . . . . . . .
● Pressure
3. . . . . . . .
● Pressure disturbance
5. . . . . . . .
● Constant pressure gradient(P) ● Cross pressure gradient ● Linear pressure gradient ● Pressure gradient(P)
Profile2. . . . . . . .
● Pressure surface of profile ● Profile ● Suction surface of profile
3. . . . . . . .
● Aerodynamics of profile ● Profile cascade
5. . . . . . . .
● Diffuser profile cascades
7. . . . . . . .
● Profile
Pump5. . . . . . . .
● Fluid-dynamic pump ● Mining pump
Ramjet5. . . . . . . .
● Ramjet
Ratio4. . . . . . . .
● Critical pressure ratio
5. . . . . . . .
● Ejection ratio
Resistance1. . . . . . . .
● Local resistance
2. . . . . . . .
● Frictional resistance
Roughness1. . . . . . . .
● Relative roughness
|
Rule3. . . . . . . .
● Glauert-Prandtl rule
Scramjet5. . . . . . . .
● Scramjet
Seal1. . . . . . . .
● Seal
6. . . . . . . .
● Abrasive damage to seals ● Actual labyrinth seal ● Brush seals ● Design of labyrinth seal ● Gas suction from seal ● Honeycomb seal ● Ideal labyrinth seal ● Interconnection of labyrinth seals ● Labyrinth seals(P) ● Material of seals ● Steam injection in seal
Shape4. . . . . . . .
● Convergent nozzle shapes ● Divergent nozzle shapes
5. . . . . . . .
● Diffuser shapes
Shuttle3. . . . . . . .
● Space shuttle
Sound3. . . . . . . .
● Sound intensity gradient ● Sound intensity
Speed2. . . . . . . .
● Speed of sound ● Speed sensor
3. . . . . . . .
● Speed of sound
4. . . . . . . .
● Speed of sound
Stress7. . . . . . . .
● Stress tensor(P)
Sucking5. . . . . . . .
● Sucking
Superfluidity7. . . . . . . .
● Superfluidity
Theorem3. . . . . . . .
● Hugoniot's theorem
Thickness7. . . . . . . .
● Energy thickness(P) ● Displacement thickness(P) ● Momentum thickness(P)
Throat5. . . . . . . .
● Throat
Throttling● Throttling
6. . . . . . . .
● Throttling ● Throttling steam(P)
Tube5. . . . . . . .
● Draft tube
Tunel4. . . . . . . .
● Wind tunnel
|
Turbine4. . . . . . . .
● Turbine stage
Turboexpander6. . . . . . . .
● Turboexpander
Turbulence● Turbulence
Unit6. . . . . . . .
● Multistage reduction unit ● Reduction and cooling unit ● Reduction unit
Valve1. . . . . . . .
● Stop valve ● Valve
5. . . . . . . .
● Valve with diffuser
6. . . . . . . .
● Balancing valves ● Control valve ● Diaphragm reducing valve ● Diaphragm safety relief valve ● Double seat valves ● Flow through valve ● Reducing valves ● Single seat valves ● Throttle valve ● Valve characteristics ● Valve with diffuser
Velocity1. . . . . . . .
● Economic velocity ● Marginal velocity ● Mean velocity
2. . . . . . . .
● Flow velocity
3. . . . . . . .
● Compressible fluid speed ● Critical velocity ● Normal velocity ● Tangetial velocity
4. . . . . . . .
● Critical velocity ● Outlet velocity
5. . . . . . . .
● Critical velocity ● Tangetial velocity ● Velocity profile
7. . . . . . . . ● Attack velocity ● Critical velocity ● Mean velocity ● Velocity profile
Viscometer7. . . . . . . .
● Viscometer
Viscosity7. . . . . . . .
● Critical viscosity ● Dynamic viscosity ● Kinematic viscosity ● Reduced viscosity ● Viscosity ● Viscosity of air ● Viscosity of gas mixture(P) ● Viscosity of water ● Viscosity values
Volume4. . . . . . . .
● Specific volume
Vortex● Vortex generator
6. . . . . . . .
● Corner vortex ● Vortex
Water4. . . . . . . .
● Water steam
Wave3. . . . . . . .
● Compression waves ● Crossed shock waves ● Expansion waves ● Formation of expansion waves ● Formation of oblique shock wave ● Formation of λ-schock wave ● Normal shock wave ● Oblique shock wave(P) ● Shock wave ● Shock wave angle ● Shock wave division ● Sound wave ● λ-shock wave
4. . . . . . . .
● Expansion waves ● Oblique shock wave ● Position of shock wave in nozzle(P)
5. . . . . . . .
● Oblique shock wave ● λ-shock wave
Xfoil2. . . . . . . .
● Xfoil
©Jiří Škorpík, LICENCE |