
Appendices

Appendix 1: Solving problem
The calculation here is based on the nozzle equations derived for ideal gas

and  lossless  flow.  This  is  a  methodical  problem,  where  the  calculation  of  the
required quantities can be done in the order as given in the entered parameters, i.e.
first we decide whether critical flow occurs, then we calculate the outlet velocity
and finally we calculate the mass flow through the nozzle.

Entered parameters of the problem are:

Vi pi ti pe Ae cp r κ

250 1 350 0,25 15 1,01 287 1,4
V [m·s-1]; p [MPa]; t [°C]; A [cm²]; cp [kJ·kg-1·K-1]; r [J·kg-1·K-1]; κ [1]

To determine if  the flow in the  nozzle  is  critical,  compare the stagnation
nozzle pressure ratio  εs with the critical pressure ratio for dry air ε*

s. The nozzle
static pressure ratio ε can also be used. If the static pressure ratio ε is less than the
pressure ratio ε*

s, it is certain that critical flow will occur.
The critical pressure for dry air can be read from Table 4:

ε*s

0,5283
[1]

The critical pressure ratio from the static pressures ε can be calculated using
Equation 5 by substituting pi into the pressure numerator instead of pis:

ε
0,25
[1]

If  ε<ε*s is valid, it  means that critical conditions will  occur, therefore the
quantities  at  the  nozzle  outlet  will  be  indexed* to  show  that  this  is  a  critical
condition at this point.

The calculation of the outlet velocity  Ve can be based on  Equation 1(b). In
this case the total absolute temperature Tis, must be determined, the pressure ratio
in the nozzle throat will be critical.

We calculate the total temperature tis using the definition equation of the total
enthalpy hs (see also Figure 1) equation to calculate the enthalpy as a function of
heat capacity temperature at constant pressure [Škorpík, 2024]:

h is=hi+
V i
2

2
,

Cp⋅t is=Cp⋅t i+
V i
2

2
,

t is=t i+
V i
2

Cp⋅2
.

tis Tis V*e

380,94 654,09 467,97
t [°C]; T [K]; V [m·s-1]

If the critical state is reached in the nozzle, then Equation 7 can be used for
the mass flow through the nozzle.

The outlet coefficient χmax can be read from Table 4:
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χmax

0,6847
[1]

The stagnation pressure  at  the  nozzle  inlet  pis can be calculated from the
isentropy equation and the ideal gas equation of state [Škorpík, 2024]:

pis⋅v is
κ =p i⋅v i

κ
, v= r⋅T

p
⇒p is=p i(T isT i

)
κ
1−κ

.

The equation of state of an ideal gas can also be used to calculate the specific
volume vis:

pis vis m*
1,1848 158,44 2,8086

p [MPa]; v [dm3·kg-1]; m [kg·s-1]

Appendix 2: Solving problem
The calculation here is based on the nozzle equations derived for ideal gas

and lossless flow. Equation 13 is used to calculate the Laval nozzle dimensions.
Entered parameter of the problem is:

α

10
α [°]

To calculate the radius of the nozzle, or its length, it is necessary to know the
flow  flow  area  at  the  inlet  (see  Problem  1)  and  at  the  outlet,  which  can  be
calculated from the mass flow rate through the nozzle, the gas parameters (Problem
1) and the continuity equation for the nozzle (Equation 3). The state variables are
calculated according to the equations for an ideal gas (isentropy equation, equation
of state) [Škorpík, 2024], so for the specific volume ve we can write:

pis⋅v is
κ =pe⋅v e

κ ⇒v e=v is(p ispe )
1
κ
.

A* m˙ κ pis vis pe εs r* Ve

15 2,8086 1,4 1,1848 158,44 0,25 0,2110 2,1851 686,73
ve Ae re rr t rt l
481,40 19,689 2,5034 0,8347 0,0727 2,1883 3,6747

A [cm²]; m [kg·s-1]; κ [1]; p [MPa]; v [dm3·kg-1]; ε [1]; r, t, l [cm]; V [m·s-1]

The  Mach  number  and  the  speed  of  sound3. can  be  calculated  using  the
following equations:

ae=√κ⋅r⋅T e; M e=
V e

ae
.

The product r·Te can be substituted by the gas equation of state pe·ve:

ae Me

410,48 1,6730
a [m·s-1]; M [1]
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